Ridge Regression Learning Algorithm in Dual Variables
نویسندگان
چکیده
In this paper we study a dual version of the Ridge Regression procedure. It allows us to perform non-linear regression by constructing a linear regression function in a high dimensional feature space. The feature space representation can result in a large increase in the number of parameters used by the algorithm. In order to combat this \curse of dimensionality", the algorithm allows the use of kernel functions, as used in Support Vector methods. We also discuss a powerful family of kernel functions which is constructed using the ANOVA decomposition method from the kernel corresponding to splines with an inn-nite number of nodes. This paper introduces a regression estimation algorithm which is a combination of these two elements: the dual version of Ridge Regression is applied to the ANOVA enhancement of the innnite-node splines. Experimental results are then presented (based on the Boston Housing data set) which indicate the performance of this algorithm relative to other algorithms.
منابع مشابه
A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملA Modification on Ridge Estimation for Fuzzy Nonparametric Regression
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the Lagrangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the crossvalidation procedure for selecting the o...
متن کاملA New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables
We consider the problem of model selection and estimation in sparse high dimensional linear regression models with strongly correlated variables. First, we study the theoretical properties of the dual Lasso solution, and we show that joint consideration of the Lasso primal and its dual solutions are useful for selecting correlated active variables. Second, we argue that correlation among active...
متن کاملKernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling th...
متن کاملLOCO: Distributing Ridge Regression with Random Projections
We propose LOCO, a distributed algorithm which solves large-scale ridge regression. LOCO randomly assigns variables to different processing units which do not communicate. Important dependencies between variables are preserved using random projections which are cheap to compute. We show that LOCO has bounded approximation error compared to the exact ridge regression solution in the fixed design...
متن کامل